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PREFACE

This report presents a new analytic approach to optical pulse

propagation through a multiple scattering medium. Such a model is

needed to resolve propagation issues in the Blue-Green Optical Com-

munication Program. The analytic model is capable of (1) duplicating

highly aggregated Monte Carlo computations at significantly lower

cost, and (2) providing detailed computations (e.g., involving finite-

dimension receivers) that are impractical to simulate.

The effort was jointly funded by the Defense Advanced Research

Projects Agency, the Office of Naval Research, and the Naval Electronics

System Command. The technical advisor was the Naval Ocean Systems

Center. The report should be immediately useful for verifying or up-

dating modular expressions in the current Navy model for single-pulse

downlink propagation.
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ABSTRACT

V

This report develops an analytic model for the propagation of

dn optical pulse through a miltiple scattering medium. Such a model

is needed to investigate the effect of clouds on optical communica-

tions from a satellite to a 'submarine. A key initial result is the

derivation of simple expressions for the first two spatial and angular

moments of the radiance distribution for a narrow delta-function source

immersed in an infinite scattering medium. The moments support a

diffusion approximation for the transport process in an infinite

plane-parallel cloud. First the radiance is calculated at the cloud

exit and on a plane an arbitrary distance below the cloud, then power

collected by a finite receiver located on this plane is computed.

The model is validated by comparing its results with computer simu-

lation curve fits for optically thick clouds (i.e.,L6j> 15). The

model is capable of duplicating nearly all the simulation results but

at significantly lower cost. Furthermore, detailed calculations im-

practical to simulate are readily computed.
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I. INTRODUCTION AND SUMMARY

This report develops an analytic model for the propagation of an

optical pulse through a multiple scattering medium. Such a model is

needed to investigate the effect of clouds on satellite-to-submarine

communications by means of a blue-green laser. Figure 1 shows the

portion of the propagation path considered here as well as the key

physical and system parameters of the environment and the receiver.

We consider both a narrow collimated and a broad Gaussian beam

as a source function at the cloud entrance. In both cases, however,

the source is assumed to be a delta function in time. The narrow beam

response provides both a Green's function for the broad beam input and

a tool for comparing our results with Monte Carlo simulations. The

cloud is assumed to be a plane-parallel slab of infinite horizontal

extent. Cloud parameters are physical thickness Z0 , optical thick-

ness T, scattering coefficient ks, single-scatter albedo X, average

cosine of the polar scattering angle g = (cos e), and (cos 2 O). We

provide analytic expressions for the radiance at the cloud exit (i.e.,

at z = T = ksZ0) and the power received by an infinite plane receiver.so0
The latter expression corresponds to the problem addressed by computer

simulation experiments.

Figure 1 shows that the radiance emerging from the cloud is propa-

u gated through the atmosphere to a plane just above the ocean surface

(i.e., z = T + d). The atmospheric layer below the cloud is character-

ized by its physical thickness Z and absorption coefficient ka; the nor-

malized distance d in Fig. 1 is given by d = ksZI. We calculate the

power into an on-axis receiver (at z = T + d) with aperture a and polar

field-of-view half-angle 0 fov In an actual communication link, the

receiver would, of course, be located on a submarine some distance

below the ocean surface. However, we calculate the received pulse

above the ocean surface to develop modular expressions for transmission

and pulse spreading due to clouds and atmosphere alone, and to enable

experimental verification of our results with data gathered by ground-

based receivers [1] or scaled laboratory experiments.
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1P The most complete mathematical description of the multiple scatter-
ing problem is given by the nonstationary radiative transport equation

of Chandrasekhar [2]. Written in dimensionless variables, the transport

equatirn for the radiance I(x, a; •) takes the form

a; + e • VI = -I•+ J I(x, a'; ý)p(a'; a) d•,

+ So(x, a; •) , (1)

where k = kect--t signifying time and ke the extinction coefficient;

x = keXX is the normalized cartesian spatial coordinate; a = (0, €)

denotes an ordered pair of angular direction; and e is the unit

vector, and dw the solid-angle element, in direction a. In addition,

p(a'; a) is the scalar phase function, S0 is the source function, and

X is the single-scatter albedo.
Unfortunately, the nonstationary transport equation has not been

solved in a form suitable for computation. Hence two procedures have

been widely used to obtain quantitative results--solving 1., (1) under

the small-angle assumption [3], and simulating the scattering process

by computerized Monte Carlo methods [4].

Although the scalar phase function is indeed highly peaked in the

forward direction for aerosols whose mean radius is much larger than

the optical wavelength, the small-angle assumption may be invalid for

"clouds thicker than several mean free paths. In principle, Monte

Carlo simulations can provide the required numerical results for

studies of optical communication systems. In practice, however, the

cost of simulations usually limits calculations to highly aggregated

quantities (e.g., optical pulses collected over infinite receiving

planes [4]). More important, Monte Carlo curve fits usually do not

illuminate the underlying physical phenomena of interest.

To overcome such difficulties, we begin by deriving the first
• •two spatial and angular moments of the radiance function for a narrow,

collimated, delta-function source immersed in an infinite medium (Sec.

II'). The moments are expressed as simple closed-form algebraic formulae
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derived with no approximations (e.g., small-angle assumption, restricted

scalar phase function) and span the regimes from forward scatter (opti-

cally thin media) to diffusion (optically thick media). Their asymp-

totic limits are shown to correspond to the usual thin and thick cloud

approximations (Sec. III).

In addition to clarifying the scattering process, the moments also

provide the nonstationary drift and diffusion coefficients for the dif-

fusion equation approximation to the transport equation (1). The full

radiance distribution at the cloud exit (for T > 15) is derived from

the energy density solution to the diffusion equation for finite cloud

boundary conditions coupled with the published angular distribution

for a diffusing particle emerging from a scattering medium (Sec. IV).

The Green's function atmospheric propagator then allows power pulse

calculations for a finite receiver placed an arbitrary distance below

the cloud (Sec. V). Finally, the effect on the blue-green laser com-

munication program is discussed (Sec. VI).

We validate the diffusion approximation to the transport process

by comparing our calculations with published simulation curve fits

for the functional form of received power versus time, total trans-

mission versus the optical thickness of :he cloud, spatial and angular

spreading versus optical thickness, and multipath time delay versus

optical thickness. In each case, the two methods show excellent agree-

ment: the calculated curve generally overlaps .he simulation fit for

.T 15.
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II. MOMENTS OF RADIANCE DISTRIBUTION

Consider a photon immersed in an infinite, nonabsorbing, scatter-

ing medium with collision geometry shown in Fig. 2. Path lengths between

scatterings Zn are independent, identically distributed (i.i.d.) random

variables. The k.n are distributed exponentially witl i parameter ofn
unity corresponding to randomly (i.e., Poisson) distributed aerosols

and normalization of x = (x, y, z) to the mean scattering distance

kls. Polar and rotational deflection angles--e and 4n' respectively--
'I n n3

are i.i.d. and distributed according to the scalar phase function,
which is assumed to be such that en and 4n are independent and (by

sy-imetry) 4n is uniformly distributed on (0, 27).

The density function f(x, a; ý) is defined so that f dVx dwa gives

the probability that a photon initially heading in the z direction at

x - 0 will, at time = k ct, be found in the volume element dV =

dx dy dz while heading within the solid-angle element dw oriented in

direction a (0, 4). The radiance I(x, a; C) in dimensionless vari-

ables resulting from an initial, arbitrarily thin pulse in space and

V time is then given by I(x, a; E) = E0 f(x, a; ý), where E0 is the energy

in the initial pulse.

Without explicit knowledge of f(x, a; Q), this section derives

expressions for the following moments of the scatterir.g process, all

conditioned on a photon initially at x = 0 and directed along the

z-axis in an infinite nonabsorbing medium.

* The mean penetration into the medium at time E:zil
f(g) = zf dV dw a

V S

iilk
AZ
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I The variance along the axis of propagation:

a(1 ) 2 [z - z(vi)2 f dV dw
z ff X a

x

X

* The transverse variance:

a2(M a2(OD = X J 2 f dV dw

VA

* The average cosine of the polar heading at time $:

(Cos (m) J=f f cos 0 fdV,

V2Ex

2
* The mean of cos O(E):

(Cos2 o(W) f cos2 6 f dVx
Vx f

where the solid-angle integrals are over 0 = 4v steradians

and x(Q) = y(E) E 0 by symmetry.

The following derivations are included for mathematical completeness,

and may be omitted by those most interested in the physical significance

| *of the moments described in Sec. III.

The derivations proceed in two parts. First, the (conditional)

moments of f (x, a; Q)--i.e., the volume-angle density restricted to
n

photons that have scattered exactly n times--are found; then the un-

conditional moments are computed directly as, for example,

"W~~ 4-6 ý
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where the probability of n scatterings at time E z 0 is given by

Pfn(E) =n) =i e-, n o 0. (2)

CONDITIO1NAL MEAN xn(E)

At time E the random position vector of a photon initially at

x - 0 traveling in z direction and scattered n times is

yn(D}-- = x(3)
Z n(Q)/ m-0

where

k=0 (4)

£ is the random distance traveled by the photon between the m andm
im + 1 scattering, and Bk is E matrix giving the change in heading after

. -. th
the t scattering everit. Therefore,

/1 00\

=010 1)

- and

/co. O k cos Ok -sin 0k cos ýk sin Ok

"B.K � in Ok cos ek cos k sin Ok sin

-sin k 0 cos /

,÷

4-



The independence of the 0 k and •k imply the independence of the B k9

although Z is not independent of Z %, for all m, m' <9 n, when con-

ditioned on a total of n scatterings.

Taking the expectation of Eq. (3), we have

• n
X-n(O) IM Vm-M (3')

m-0

4 • To evaluate Xm, we must digress into order statistics. Given that

the photon has been scattered n times at time E, let TV, T2, ... T n
be the ordered random scattering times. Since unordered scattering

times are i.i.dd and uniform on (0, E], the ordered random scattering

times have the joint probability density [5]

=n'

fTIT29,...,3n(TIn E2P "'' End =n 1 0 I 23- "' n

Tw= 0 i otherwise

be The scattering lengths are related to the order statistics by the

S~formula

tk i Tan unfr k 0 O, t, n (5)

S Thus,

s n n So
0 0 0

dg ... . ...

k fn j )
00 0
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and

m m n+ 1

Since the Bk are i.i.d, it follows from Eq. (4) that

V m= B0 B1 B2 . (. ) m(0 01 1

where

= 0 0 .(6
(sin 8) 0 (cos 0(

Thus,

((coso O)m

Letting v 1 - g = -- (cos 8), with the help of Eq. (3') we finally obtain

xn(ý) =yneC) 0 (7)

and

" •" • ,.n + l

n n + 1 v (8)

CONDITIONAL SECOND MOMENT (x(•) xT )

'Multiplying the random position vector in Eq. (3) by its trans-
[ pose gives

til

%A
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m=O1

m=O k0O

Taking expectations and using the independence of the £ and v yields
x M --

n n

m -0 k =O

n nn-i-nm Yrn-r

m=O m k=

From Eq. (5) we have

z 2 (T T )2

m (T~ 1 -

and

k " k k (T m+l Tm)(Tk+l k)

Now,

Enk+2 Ek+1
Z.(TI 2 " a1 dýn dgn I dEkl- d9 k

k n =f nff f..f dfkf 2

0 0 0

f k 2x.kdk ... f d3 2J d = (k+l))

0 0 k(k1" + 2)2× dc k-l dC2 f dl (n + 1) (n + 2)
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and

(r Tk n dCEn d- ..." k2 d~+ fk+l dk C

0 0 0

ý k 4J+2 l

x J dgj dC

0 0 0

d~j_j ' dt 2 f d = (n + 1)(n + 2)

0 0 0

for k > j

so that

J(k + 1)C 2fok

j k (n + 1)(n + 2) ' forkJ

Thus,

>- 2"" M.- (n 4. 21) ..... .... . .in* m Mrn+ in (+)n2)

(Zm -k>) (Tm, 1 - - Tk)>

(T T > (k+ - T1 k) (TM k+l) + (T k)

"m4- k = 2(l m o k>

(n + 1)(n + 2(.t2) form>k

I A



... . .... . ......

-13-

Substituting the above results into Eq. (9) and separating the

zeroth term in the first summationi, we obtain

2 [ 0 ())\ n

(xn(0) x-T()> (n+1)(n+2 0 E ÷ v) T(

n m-1

+ E E(v J)] (10)

m=l k=0

From Eqs. (4) and (6), we have

•>= (B1 "'" Bk Bk+ Bk+2  '" B(0) T>

SY B1 ""Bk Bk+I Bk+2 "' (m ) k

(-- < *os Bk>c- s 0)i-k()

-11

m~in-k k•\

kC0(8 ) 'k k'

D0

m-- (

(B1.. gCo k

.(4

>r- T
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Substituting Eq. (1i) into Eq. (10) and separating terms with k = 0

in the double sum of Eq. (10), we obtain

2 0 0 0 n

r [\oooil2•20 0 g 0 0 T>• vT

(n +~ I)n 2) _ i r-ig ]
• vT)

( + 1)(n-+-2) -g 0

k=i •=

0• 0

(n + n)(n + 2) 0 m T

2"i

+ + vT 1_ gn-k (v J)

( + )1 ( 2

i •

S-1 /n
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The evaluation of (v v> proceeds by taking expectations from

the center outward:

1(B 1> = Bl2 "'" Bk-i B(k 0 0)u B k k-1 B2 BT)
ýO01

0s 0 0

(B2 "( " (Bk ((sinB e 2> 0))
0 (cos2 1

2 k>

(-!(si 0 0

1 k-12 -
k •

0 0

where

22
3(cos 6) -1

"I !$ iSince

n

*1 

n

M=1

Eq. (12) becomes

A A
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n( " (n + 1)(n+2) 1- g /0 00 3 01

"+.1 4(1 -4 ) - i + n0 - I g 1 i
0 3 1-g 0

r.• o• o) ( 01+ (11-1 /10 0\ n-i (1000

I--0 - 0 0 2--0--- 0 10)

\3 02/ - g \1

00

2E 2 3 o + 1 -

2(n + 1)(n + 2) 00 1 0 0 1 g

-1Cg 2 n- -n-1
+ 0(1-0g+((-)9)- g)(g - )j}•

(14)

But(, (E x(.()
""ý(z Zn(E) Xn(E)> (Zn(D) yn(ý)) n(Z2n())

Thus, after combining terms in Eq. (14), we conclude that

,. -. 4
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2{

(n(D) = \yn(•)2 = 3(n + l)(n + 2)

Sw 2[( - v)n+2- 1 + (n + 2)v] -v2[1- w)n+2 -1+ (n + 2)w]

W wv(w - V
(15)

and

22

(z 2 
_2E)

n 3(n + 1)(n + 2)

(w2 3wv)[(l v) n+ 1 + (n +2v+2v2 ul-w)2 -1_+ (n + 2w

WV (w - v)

(16)

where

v = -g=i- (cosO)

and

3 2
w=3= (1 - (cos 0))

CON•DITIONAL ANGULAR MOHENTS (cos O>n and (cos 2 e)n

Let BH be the rotation matrix resulting from n scatterings, so

that

B H B 0 B . B* * n

•..
Taking expectations and using Eq. (6), we obtain

B0 0 0
BH= {n(-(sin 0)(cos (n-o 0 co )n

I
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But by definition ( 0 0 0 )
(sin On 0 (co3 O)n

Matching entries in the last two expressions for B the expectation

of the polar angle cosine after n scatterings is given by

(Cos On = (Cos) = ( - v)n (17)

j Similarly,

n o It 01

n

S 0 (Cos20)

so, after matching terms with Eq. (13),

(COS = (1 + 2n) = (1 + 2(1-w)n] . (18)

1 3 1

UNCONDITIONAL MOMENTS

We calculate the unconditional moments from the conditional

moments after observing that the probability of a photon undergoing

exactly r, scatterings at time & is Poisson-distributed with mean

as in Eq. (2). Hence from Eqs. (7) and (8), we obtain

-... •I M
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n=O

.(E) P{n(E) n} i ( 0 ,(20)n-0
(E) -- (E) n} • , - 0 (20)

n--O

and
-00

z(M) =,E P{(n(E) = nI Zn(E)

n,•0

nCO
n! n + v

n-n0

n+1 ~ ( )n+1

- v (n+ 1)! - (n + 1)!
S nffO n=

S(e(l-v)-
v

-V
•-:- •e (21)

2
Similarly, to calculate the unconditional spatial variance 2x(E), we

combine Eqs. (2), (15), and (19) to obtain

- S--
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a2  = 2

x (x Xc) -"

n=0

,j n! 3(n +1)(n +2)
n=0

>~~ - n+2 -1+ (ni +2)]- ( n+2 'v)+ w)v2( v) l-w) 1 (ni 2)wIl

2v (n+2)

n+-C 2 1 0 V In2
3v2 2 )! + a (n + 2)!

1Wn=0

n+2n+

(n + )! + E (n+2)E!

Since

t Co

1 and

L.(n + 2)!e
n=

-~~ J2'-1~
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combining terms yields

2 2VE 2 -WCa 2x• M 2w w2e- - 1 + VO> - 2(e-w 1 + WE)• (22)

3wv2 (w - v)

From Eq. (15), (y 2()> = (x2(&)>; therefore,

2 - 2 w2 (ev• - 1 + v - v2 (ew - 1 +W) (23)
y Wv (w - v)

Likewise, to compute a 2z() we use Eqs. (2) and (16) to obtain
z

(z2 1:{n(I (z2(ý)>

n=O

O n! 3(n + 1)(n + 2)i n-0

i • (w2 3v[ i Vn+2 2 wn+2
S(W - 3wv)(1 - v) 1+ (n + 2)v] + 2v2 [(i -1 + (n + 2)w]I SWv (W -V)

2 VE2 -WE
i 2 (w 3wv)(e- 1 + vE) + 2v(e -1+ w)

3 UM2 W V3 %"V2(w' - v)

Thus,

2 2 -2•)_2

2 (w2  
3wv)(ev + v + 2v(e 1 + w,,

2 v)

vW

I VI
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The calculation of the unconditional angular moments proceeds in
the same manner. Thus, Eqs. (12) and (17) yield

co

(cos E(•)) =E P{n(•) = n} (cos e)
n=O

co

e E n! v = e-C e(l-v)

n=O

=e , (25)

and Eqs. (2) and (18) yield

Co

(Cos 2 O(C1 .{() =, n} (cos2 e)

n0n
n=O

[ + + 2(1 -)n

" .... •n n.

PE i (1 E + 2e- i). 26

e 2e

(1+2')(6i3
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III. MOMENT ILLUSTRATIONS AND ASYMPTOTICS

Here we examine the physical significance of the moment formulae

as well as their behavior for small and large times to allow compar-

ison with published results and to demonstrate the traisition be-

tween the diffusion and forward scatter regimes. Our discussion is

predicated on the assumption of an arbitrarily thin, delta-function

time pulse immersed in an infinite nonabsorbing medium. Section IV

extends our results to a finite cloud with absorption, and Sec. V

considers a broad Gaussian beam at the cloud entrance and an atmo-

spheric la~er below the cloud.

DIFFUSION REGIME

It is convenient to consider a simple diffusion (e.g., Brownian

motion) as the limiting process obtained when a particle suffers an

arbitrarily large number of isotropic scatterings separated by arbi-

trarily small path lengths. The moments of the particle distribution

are then consistent with a stationary centroid at x = 0, a spatial

variance along each coordinate that grows linearly with time, and an

isotropic heading independent of time. Although individual photon

deflections within a cloud are highly anisotropic, after a photon

undergoes many scatterings, its behavior may be expected to resemble

that of a diffusing particle. This intuitive notion is verified by

* •the moment formulae below.

Figures 3 and 4 illustrate the temporal behavior of the first two

spatial moments of the scattering process. Figure 3 plots z(ý) com-

puted from Eq. (21) for several values of (cos 6>. The asymptotic
limit of Z(C) is

lim z(M) 1-(cos 0) (27)

The centroid of the photon density is thus stationary at about z 7

for E > 20 when (cos 6> = 0.85, a representative value for cloud

aerosols [1]. Figure 4 plots a and z (C) from Eqs. (22) and (24),
x z

gg 'g4
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respectively, for (cos 0) = (cos2 O> 0.85. The asymptotic limit of

the corresponding variances is given by

2x) = M 2 (28)

for large •. Equation (28) evaluated for (cos G> = 0 (isotropic

scattering) is the classical diffusion result for Brownian motion [6].

Equations (27) and (28) also evince the 1 - (cos 0) factor suggested

for scaling diffusion results [4].

To conclude that the photon distribution for latge times resembles

that of a diffusing particle, we must inspect the behavior of the angular

as well as the spatial moments. From Eqs. (25) and (26) in Sec. II,

(cos ,(•)= ev• (29)

and

a 2 () = (cos2 8(e)) - (cos em) 2
Cos e

1 -WC -2vE

(l + 2e - e , (30)

where e(E) is the polar direction of the photon at normalized time E.
2Figure 5 plots (cos e(W)) and 0os e( for (cos () = (cos e)

O,= 0.85. The asymptotic limit of (cos O(W)) is zero, corresponding to

a diffusion-like isotropic polar heading; and

hlin 2  1Sa. cos6

which is also a diffusion result. Thus, the asymptotic limits of the

first two spatial and angular moments of the photon distribution are

those of a diffusion process in an infinite medium. Furthermore, the

diffusion limits are approxImated after about E = 15, suggesting a
diffusion (or thick cloud) regime for optical thicknesses greater than

T 15.
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FORWARD SCATTER REGIME

Since photon scattering in clouds is highly peaked in the forward
direction, photons deflected only a few times maintain their initial

spatial, angular, and temporal cohesion. In cur normalized units, the

average number of scatterings at time E is E itself for randomly dis-

tributed aerosols. For small E, therefore, we would expect the moment

formulae to evince the behavior attributed to the multiple forward

scatter (or thin cloud) regime.

Expressing ao2 (E) from Eq. (22) as a power series of •, we obtain

2 - 2w k (1 k-k2 -k-2 k
- 3(w - v) kd k !

k=3

which provides the interesting small-time expression

O2x) w 32 _ M .3 (31)

The usual definition of mean square spread [31 results in

(r2) = (x2) + (y2>

"= 2a 
2

2w - (32)

for small times. When written in the dimensioned variables R kslr

! and t = (k s c)-l, with the small-angle assumptions (cos e) a- I - (0

and ct a-Z, Eq. (32) becvmes

(R2> =- XkeZ3(0)

() 3 e

which is identical to the small-angle scattering result (cf. !3] and
S, [7]).

7 ___ _J

M*
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However, the dependence of (r 2) on E3 in the approximate equation

(32) is valid for only about ý : 5, as shown in Fig. 6, where the rms

beam spread 4(r2) is plotted using 2(E) from both the exact equation

(22) and the approximate (small time) equation (31). We thus conclude

that, for calculating mean square spread, the small-angle assumption

is questionable for optical thicknesses greater than T = 5.

The moment formulae also allow for a simplified calculation of

the average multipath pulse delay for thin clouds. Let Aý = - T be

the random delay between the time an unscattered photon passes through

the plane z = T (in normalized units, this time is T itself since the

normalized velocity is unity) and the random time ý at which the possibly

scattered photon passes through the plane z = T.

It is reasonable to estimate the average value of ý as the time

taken by the centroid of the photon density along the z-axis to pass

through the z = T plane. Thus, inverting Eq. (21) yields

1 1

so

v ---T (33)

an expression that should be applicable for small T.

Figure 7 plots Eq. (33) and the thick-cloud simulation curve fit [4]

I C for AE versus T. The expression given by Eq. (33) appears to diverge

from the simulation prediction (compared with a true cloud exit but for

AZ relatively large T) at about T = 5, where backscatter starts to become

* important. The divergence arises because Eq. (33) for T- is derived

from an infinite cloud model, so photons that would have left a finite

cloud tend to increase the time for the z-axis centroid to reach the

plane z = T. For small T, however, nearly all photons are heading in

the forward (increasing z) direction, so the lack of a true cloud exit

at T is inconsequential.
3/2_An analysis based on a path-length integral along r - z -- the

small-angle-derived, mean square, transverse spread--obtains the

~g
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expression [8] (in our notation with the single-scatter albedo set

to unity)

2 1 ~ ~ [(~ +. T(2) .-.09 ) (34)

Expanding Eq. (34) in T, and ignoring third and higher order terms,
we obtain the small T expression

A-= 0.57 r2( 2
. (35)

Similarly expanding Eq. (33) and setting v 1 - (cos O) ! ( 2/2>

yields

-= 1r22

about a factor of two less than Eq. (35). This discrepancy is appar-

ently due to the path chosen to calculate AE in Eq. (34) (i.e.,

r z3/2) being too long for photons that have suffered, on average,

only T scatterings. However, Eq. (34) eventually (for T > 30) yields

an underestimate of AT- compared with simulation results (cf. [9])

because the smooth path is shorter than the jagged diffusion-like

sample paths.

CONDITIONAL MOMENTS

Recall that intermediate results in the moment derivations of

Sec. II are expressions for the moments conditioned on exactly n

scatterings. The conditional moments provide pnysical insights into

the scattering process that are not apparent froA inspection of the

unconditional moments. Hence, Fig. 8 plots z n() from Eq. (8) and

2 -½ 2z2C)]z k

ax(n, [) =(Xn(•)) and • (n, ) - -2 z½

p-0i
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from Eqs. (15) and (16), respE tively. Although Fig. 8 is for 1 = 100,
observe that zn (Q, ax(n, ý), and a z(n, ý) are all proportional to ý--

so, when considered as functions of n for fixed ý, their form is in-

variant with •.

The behavior of Zn () in Fig. 8 is intuitive: the higher the

scattering order n, the closer the centroid of the conditional dis-

tribution lies to the origin (indeed, lim z (•) = 0). That is, on
j n

average, the more a photon is scattered, the farther it lags behind

its unscattered brethren.
The plots of a z(n, Q) and x(n, E) display maxima at about n = 10

and n = 15, respectively. The values of n it which these maxima occur

are sensitive to (cos e) but invariant with ý. Furthermore,

lim a (n, •) = lim a (n, •) = 0. Thus, at any time E, photonsnw z n-+o x
scattered many times tend to accumulate at the origin, their disper-

sion decreasing with order n. Such clustering occurs because, at a

given time, all photons have the same path length but the relatively

jagged (diffusion-like) paths of those that have been scattered many

times will have, on average, kept them closer to the origin. That

effect would be mcst pronounced for isotropic scattering (i.e.,

(cos e) = 0) since it is identical to diffusion in the limit of a

decreasing mean free path between scatterings.

4' P
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IV. DIFFUSION APPROXIMATION FOR MULTIPLE SCATTERING

IN AN INFINITE CLOUD LAYER

The moments of the radiance distribution and the ultimately dif-

fusive behavior of scattered photons are now used to develop an expres-

sion for the irradiance at the exit of an infinite plane-parallel cloud.

The irradiance allows us to calculate the power collected over an in-

finite plane receiver at the cloud exit, then compare our results with

Monte Carlo simulations of the identical problem. The calculated and

simulated power pulses strongly agree for T = 30 and are virtually

indistinguishable for T = 80.

DIFFUSION EQUATION

The three-dimensional diffusion equation for a particle with

homogeneous diffusion coefficient D(ý) = (Dx (), Dy (), D Z )T,

drift coefficient a(ý) = (ax (), ay (Q), az())T, and absorption co-

efficient K is [i0]*

SB~~p(_x, ) "D) 2 \
[2= 2) - a(•) •y - p(x, ), (36)

where p(x, •) is the probability volume density for the particle at

time C. The solution of Eq. (36) for a particle initially at the

L • origin (p(x, 0) = S(x)) in an infinite homogeneous medium is given

by [10]

px •) = (27r)'32 A-I exp f-[KE + (2A)- ( - 11)T(x - )] , (37)

For simplicity, we define I' = and

2/(2 92 22 3'2
ax .X ay'•-' .T7
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where

i~~ •-•a(E') dE'

0

and

A = Dx(C') d' ' dlf D (4') d4'
Jo0

Equation (37) is simply the product of three independent Gaussian

densities and an absorption term e-K• Hence we may write

" P(x, J) eK• P x(x, U) Pyv(Y, Q) P z(z,

where Px Py , and pz are one-dimensional Gaussian densities. Since

a Gaussian density is determined by its first two moments and the

moments of the transport process in an infinite medium were derived

in Sec. II, we conclude that

a() 0 , (38)(0)
and

RMa (39)

2where z(), = and a )are given by Eqs. (21), (22), and
x y z

(24), respectively.

Recall that Sec. III shows that z(Q), a(Q•, and a(Q) asymptoti-
x z

cally approach classical diffusion limits. Although the nonstationary

transport equation (1) has been approximated by the diffusion equation

(36) in prior treatments (cf. [Ill) and [12)), the drift and diffusion

coefficients have been time-invariant--generally set equal to their

I •.
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asymptotic values or otherwise approximated. Armed with the exact

closed-form expressions derived in Sec. II, we will strive to extend

the region of validity for the diffusion approximation by employing the
"correct" time-varying coefficients. In the simplest sense, Eqs. (37)

through (39) together constitute the correct Green's function for the

photon density of the infinite-medium transport problem because they

provide the correct spatial moments for all ý > 0. However, the dif-

fusion approximation used to obtain that solution forces the density

p(x, Q) into a Gaussian form that is valid only after the onset of

the diffusion regime (• £ 15).

BOUNDARY CONDITIONS

Consider a photon that traverses the boundary between a scattering
and a nonscattering medium. Since it can never return to the scattering

medium, its behavior inside the cloud may be likened to that of a dif-

fusing particle attaining an absorbing wall. Diffusion theory provides

the absorbing-wall boundary condition P(x, •) 0 for all x along the

wall [10]. However, close to boundaries, the diffusion approximation

to the transport process is known to be questionable.

By direct solution of Milne's equation for a simpler, related

problem, Morse and Feshbach [11] have shown that the appropriate con-

dition for a diffusing particle used to approximate photon transport

across an exit boundary is given by

P (z) 0.71 z or (40)

where, as shown in Fig. 1, we have modeled our cloud as a slab of

infinite horizontal extent and (optical) thickness T = kZ 0 -- Z0 being

the physical thickness of the cloud. Since Milne's problem considers

a stationary plane wave incident on the scattering medium, Eq. (40)

~ is the steady-state boundary condition for a three-dimensional problem

Xw that reduces to one dimension by symmetry. Furthermore, Eq. (40) holds

for only isotropic scattering, suggesting that the usual v = 1 - (cos e)
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scaling for anisotropic scattering [11-13] should be applied to obtain

the boundar" condition

( (Z) z= or z=T (41)

which we use below.

The difficulty in applying Eq. (41) lies in specification of both

the density and its gradient at the boundary. Adopting the technique

of Morse and Feshbach [11,121, we extend the scattering medium a dis-

tance 0.71/v beyond each boundary and set pz (z, •) 0 at the boundary

of the extended medium, as represented in Fig. 9. Using the extended

medium with the diffusion approximation for Milne's steady-state prob-

lem results in an error of no more than a 0.3 percent for pz in the

scattering medium, compared with the exact solution [11.

We now solve Eq. (36) with the coefficients from Ecs. (38) and

(39), initial condition

P(x, •) = 6(x) 6 (y) 6(z) , = 0 (42)

and boundary conditions

0.71 0.71
p(x, 0) - , z= and z T + v (43)

and

p(X, •) 0 , x = y = +00 . (44)

The separability of the initial and boundary conditions for Eq. (36)

L implies that the solution is of the form

p(x, e) =e-' Px(x, D) p (y, 0) Pz(z, •) (45)
X ~y

where px' Py' and p are the solutions to three one-dimensional dif-

fusion equations with the corresponding one-dimensional boundary

~., ~ -, S 7
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conditions and without an absorption term [14]1. Thus, p xand p yremain
Gaussian with mean zero and variance (Y2  2 (Q given b yEq (2)Ix y
since our finite-thickness cloud is still of infinite horizontal extent.j Hence

P (x, x) 7 O() (46)

and

P y, y) (47)[-
y L7_7 2a 2()47

For p (z, ),we seek the solution of

ap z D z( E) 32 2 z - a ( a( 8
DE 2 az2 -a

subject to

and

0.71 0.71

PZ(z, ~) 0 , -- and z T+ v--

The method of images obtains the solution [14]

PZ(z, V) = E exp z~ [~-Z(E) + 2k (T + v4

eP z + _(E) + 2k T + 14 .2(9

ev , 49
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which is a rapidly converging series for all z and • of interest.

Thus, the solution of Eq. (36) with coefficients given by Eqs. (38)

and (39), initial condition by Eq. (42), and boundary conditions by

Eqs. (43) and (44) is

P(_x, ) e- PXx(, D) Py (Y, 0 Pz(Z, •

where p, Py, and p are given by Eqs. (46), (47), and (49), respec-

tively. The absorption coefficient K, normalized to the mean free

scattering length ks1, is
5

ka l-X
Kk ' (50)

s

where ka is the unnormalized absorption coefficient and X is the single-

scatter albedo.

IRRADIANCE AT CLOUD EXIT

Consider the probability that an unabsorbed photon initially at

x = 0 has left the scattering medium by time E. This probability is

given in the diffusion approximation by th cumulative probability that

a diffusing particle remains unabsorbed in che medium until time E:

{z( E[ T ) 1 z-e P(x, E) dV xx=- - 0

f= 1 - 0x(x, P) y (Y, •) pz(z, E) dx dy dz
X=-00 y=-00 -0

1 0 (z, •) dz
z

'4, _f
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We can thus use Eq. (48) to obtain the exit time (or "first passage")

density

9 {z) E [ Td Z2 - dz

T __ 1 Faz•) D -zJ
az 2 d z

= Laz() az M _z - 2 z(z=0

The first term in the last expression is the first-passage probability

density for photons leaving the cloud (bottom) at z = T. That density

is recognizable as the usual diffusion flux

D_z2 Vz Pz
2 z z

augmented by a drift term az pz = e-VE Pz [from Eqs. (21) and (38)],

which quickly expires for optically thick clouds. Denoting the first-

passage density at the cloud bottom by A(T, •), we have

A(T, Q) e -V - 2

211 _l + Dz()

______ 2 _ ____z

xexp - [e-v + " 1]

L 2a2() L2a 2( M 2
"ep ev 2 1 (

"4.;"A

, , - ., •. .
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where

where=-z(•) + T(l +2k)+ 4k (0.71)

R2 = z(E)+ (1 + 2k) + 1 ),

and, from Eq. (24),

2a 2 (Q)
D M•z

2 [(w - 3v)(l - e-VE) + 2v(l - e-wc) - _E -eV

v L 3(w - v) e (1 e

Thus, for a narrow, collimated, delta-pulse source with energy E0 ,

we obtain from Eq. (51) the irradiance on the exit plane z = T as

J(r, T; ý) = E 0 e-KE Pr (r, Q) A(T, Q) , (52)

where the radial distance r = (x 2 + y2 )½. Since x and y are Gaussiar.

random variables, r is Rayleigh-distributed, so

"r r2
2 r(r, Q exp 2 (53)

COMPARISON WITH MONTE CARLO SIMULATIONS

Now we digress to test the validity of Eq. (52). Consider the

power into an infinite-plane, 7r/2-field-of-view receiver. For E0 = 1

and K = 0, the received power pulse is simply A(T, •) since, from

Eq. (52),

J(r, T; Q) dr A(T, r (r,) dr= A(T, )

"Jr= 0

*"I 5W NOW
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Bucher 14] considers this problem in his Monte Carlo simulations.

Figures 10 and 11 plot the simulated and calculated pulses for T 30

and 80, respectively. Although the pulse amplitudes have been normal-

ized to unity in these figures, the integral of the pulses, or received

energy,

Co

ET f A(T, Q) d,

0

also agrees well with Bucher's Monte Carlo curve fit, as shown in

Fig. 12.

Bucher also plots (r)T, the mean radial distance of exiting
photons for a cloud of optical thickness T. We calculate

o0

where h T(r) dr is the conditional probability of a photon exiting

through an annulus dr at r given that it attains z = T. Defining B

as the event corresponding to the photon leaving at all, and using

conditional probabilities, we have

"h h (r) dr = E{r dr/B ={r Edr, B}/P1{B}

f J Erdr, Edý, B}/{fB}

E=0

-!~{~r /1{E~ }A}(5

__ Ti~
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But, from Eq. (53), the radial density of photons at time • is

F[21
J'{r Edr, B/E} exp -22 I

and

{B} = A(T, 0) d = E

After substitution, Eq. (55) becomes

h (r) dr = ETI r exp r A(T, E) da(J2() 2a2 ()]

and Eq. (54) is then

(r) rE~ r E)
rT = EI if f a exp 2 A 2 M.r=0 E=0 x (x a •

Reversing the order of integration and recognizing the Maxwellian

density results in

CO

2 2
(r) E rV - r-- exp r dr G A(T, )d

2c 3x

Tl f
.g

which is numerically integrated and plotted with the Bucher curve fit

in Fig. 13.

I

-
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A key factor in optical communications, pulse stretching is dra-

matically affected by multipath delays due to multiple scatl.ering in

clouds, as shown in Figs. 10 and 11. To characterize multipath delay

we again adopt the mean delay A = ý - T (discussed in Sec. III, p. 29).

In the diffusion approximation for an infinite plane receiver at z = T,

f C A(T,) dQ

f co =0T 
(57)

C= A(T, g) dt

F1gure 14 plots A_ against T using Eq. (57) aad the Bucher simulation

curve. The calculated pulse broadens as the diffusion npproximation

breaks down below T - 15.

Together, Figs. 10 through 14 illustrate the remarkable corre-

spondence between the calculated and the simulated results. The power

of an analytic solution of the nonstationary transport problem does

not, however, lie in duplicating highly aggregated simulation results.

Rather, once validated, the analytic model provides solutiont: to prob-

lems that would require excessive computer time to simulate Vecause

of sparse histogram data. For example, if the infinite-planii, 7r/2-

field-of-view receiver is replaced by a finite receiver to siudy field-

of-view effects, then an analytic treatment may provide the only prac-

tical way to obtain results. We consider the problem of finite receivers

below.

gL
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V. PROPAGATION BELOW CLOUD AND FINITE RECEIVER CALCULATIONS

Recall that r,T; T ) in Eq. (52) is the diffusion-derived

irradiance on the cloud exit plane (z = T) for an initial, narrow,

collimated delta pulse at x = 0 on the cloud entrance plane. The

radiant source for the transport equation (1) in that case is

E0 6(x) S(a) 6(g)
SO" ý a; Q) = -_sin 8

where a(O, ) denotes the ordered pair of polar and rotation angles,

respectively. The generalization to a broad Gaussian beam at the
B i straightforward. Hence,cloud entrance with spatial variance a ssrihfowr.Hne

for the transport source

E 0 6 6(a) 6(E) F (x2 y21 (58
0 a; 2  exp - 2 (58)

27B sin B a8

or for the corresponding initial energy density in r =2 + y2

and z

21
p(r, z, ) Er B 26(z) 6(M) exp - 2 (59)

the exit plane irradiance becomes

CO

9 J~r, ; ~) =E 0  J,(r P ~, T; ) iexp[ a dli
0. B B_

E 0 e-E Pr(r, ) A(T,) , (60)
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where

r r
p (r, ÷) (61)

rr M2  + 22 ea (C 2] ~(1

and A(T, C) is given by Eq. (51). The broad-beam irradiance equation

(60) is used below to develop an expression for the full radiance dis-

tribution at the cloud exit.

RADIANCE AND RECEIVED POWER AT CLOUD EXIT

The angular distribution of particles emitted from the exit sur-

face of a plane-parallel scattering medium with a stationary plane-wave

ii input (Milne's problem) is closely approximated by the normal•" I

expression

g(t) 2 + 3 cos 0=~a 71T, 0 ý 0 :r 7r/2, 0 9 ý :g 27r , (62)

which is derived by Morse and Feshbach [11] using a steady-state dif-

fusion approximation. Simulations for delta-pulse inputs have shown

that the light emerging from an optically thick medium is consistent

with Eq. (62) and nearly independent of r, T, and E [4,15]. Thus, we

adopt Eq. (62) for the angular distribution of photons leaving the

bottom of the cloud, with the source function given by Eq. (58).

The separability of the spatial and angular dependence for light

"emerging from the cloud bottom implies a radiance of the form

I~r, T, �; •) "'J(r, T; •) g(c). But, by definition,

J(r, T; ) I(r, T, a,: &) cos 6 da , (63)

where dw a sin O dO d# is the solid-angle element in the direction

a = (0, •), and the integral is over R = 4?T steradians. With the

initial condition given by Eq. (58), therefore, the radiance at the

cloud exit from Eqs. (60), (62), and (63) is

tt
N A J
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I(r, T, a; J) = J(r, T; E)g(a)

fg(a) cos dwS10

E 0 e-KE(2 + 3 cos 0) pr(r, Q

x A(T, E) , 0 :g 67r/2 , (64)

where pr(r, Q and A(T, E) are given by Eqs. (61) and (51), respectively.

The power into an on-axis receiver at the cloud exit, with normal-

ized aperture radius a and field-of-view half-angle 8fov, is

a 0 fov 27r
P(T)M =f f f I cos 0 sin 0d0 d40

r0 0=0 f0=0

=0 e-KE (3 - cos 2 6fov -2 cos3 0 fov

- exp - A(T, •) . (65)
2 Il02(ý) + 2

For a = -, 8for = rr/2, E0 = 1, and K = 0, Eq. (65) reduces to

P T() = A(T, ý), consistent with the infinite-plane-receiver analysis

in Sec. IV, p. 43.

PROPAGATION BELOW CLOUD

Consider the narrow delta pulse of light emerging from the cloud
T

bottom (z = T) at position r' (x', y') , time C', and direction

a' (0', 4'). At time • = •' + d sec 0, the pulse will illuminate

"the plane z = T + d at the position r = r' + d tan 0 n while main-

taining the direction a - a', where n__L = (cos 0', sin 0') . Hence

the atmospheric propagator from the plane z = T to the plane z = T + d

is

".' S- .M L
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G(r, T + d, a, •; r', T, a', •)

-Kd sec 6' r- r' - d tan 0' n ) 6(c - a') 6(• - •' - d see 0')

In Cartesian coordinates, the radiance emerging from the plane z r + d
Sis given by

CO

I~r, T + di, a; f d=/ c if d 2rf dw, a (r' , T, CO.~' G

0 R2 Q

-Kd sec I(r- d tan 0 n_, T, a; • - d sec 0)

which, with the help of Eqs. (61) and (64), becomes

SEo

I(r, T + d, a; ) e ( 2 + 3 cos 0) p r, )47r

x A(T, -d sec 0) , 0 :!c 69r/2 , (66)

where

r27r2 d sec 0) +

x exp (x- d tan 0 cos 2 + (y d tan sin )2

2I (• - d see 0) + ]r (7
lox (67)

- The value of the radiance at z = T + d and r 0 is of interest below.

Hence, from Eq. (66),

E e-K(2 + 3 cos 0) A(T, • - d sec 0)
Slr=0 

87r2 [C2 - d sec 0) + o2]

x exp 2] tan 2 
0 (68)

2d sec 0) +

x
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For calculating the power into an on-axis receiver at z = r + d

with aperture a and field-of-view efov, we assume that the radiance

over the aperture is approximately equal to its value at r = 0 when

I a << [a2 (C )+ a2]

for all C > T. Thus, from Eq. (68), the received power is given by

0.fov 27r

P ~ : dr f dO[ do II cos 6 sin 0
_]<a 0=0 0=0 r=0

Eoa2  0fov
E- 0 a4 -KC A(T, C - d sec 0)

e=o a2(C-Bd sec e)+ a2

x exp r d 2 tan 0
x exp d 2 tane 2 (2 + 3 cos 8) cos 0 sin 0 dO,

[ d( (, sec 0) + (69B] (69)

which may be evaluated numerically. However, if efov is also small,

Eq. (69) reduces to

5a2 E0  -KC
PT~(•) =- 2 e A(T, C - d)

"d 4d2

x [- exp - [ o v (70)i:-; 2ro~x( d) 40

As a check for Eq. (70), we obtain

5a2 E0 e2
0 fov -KCd0im P1 l(•) 8[a2() 2 O2] e A(T, C)

which is identical to PT given by Eq. (65) evaluated with the usual

approximations when a and 0 are assumed to be small.
fov

-42
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To show the effect of replacing Eq. (69), which requires a numer-

ical integration, with the closed-form equation (70), Fig. 15 plots

ET+d(a, 0 fov) f I -P+d(C) dE

=0

against efov using PT+d(E) from both Eqs. (69) and (70). The approxi-

mate equation (70) results in under a 5 percent error in ET+d(a, 0 fov)
2

for 6fov r 15 deg whern E0 = 1 J, K = 0, (cos 0) = (cos e) = 0.850,

T = 30, d = 150, rB = 500, and a = 0.01. Therefore, we recommend the

use of the computationally efficient Eq. (70) whenever 0fov : 15 deg.

Furthermore, Fig. 15 indicates that beyond about 0fov = 20 deg, the

signal energy into the receiver does not increase appreciably.

Figures 16 through 21 show the effect of the cloud and atmospheric

layers on energy and pulse stretching for a finite receiver located

on-axis a distance d below the cloud. In each case, the received energy

is given by

FTd(a, Pfor) =( JQd d,
SE=0

where PT+d is computed from Eq. (69) if 0 fov > 15 deg or from Eq.

(70) if fo ! 15 deg. Pulse stretching is again represented by the

average multipath delay

00
STEd(a, Ofov) P T=d(C) dE - (T + d)

r+d f ~
C=0

We do not parameterize any calculations on receiver aperture

because of the simple dependence of P (E) on aperture a, as evinced
T+d

in Eqs. (69) and (70). The following input values are used in the

computations for Figs. 16 through 21: E0 = 1 J, K = 0, (cos e) =

(cos2 0) = 0.850, and aB = 25. The thickness of the atmospheric layer

•DB
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is expressed in kilometers under the assumption of a mean free scatter-

ing length k = 20 m; in this case, the standard deviation of thes

incident beam is 500 m.

Figures 16 and 17 show the interaction of atmospheric layer thick-

ness and field of view. For thinner layers, wider fields of view in-

crease both received energy and pulse stretching, but the latter effect

is relatively slight. For thicker atmospheric layers (D > 3 km), in-

creasing field of view beyond 20 or 30 deg does not influence received

energy or pulse stretching--because, if the spot subtended by the re-

ceiver on the cloud bottom is larger than the main body of the exiting

beam, then increasing field of view has little effect on the received

pulse. Figures 18 through 21 display the relative importance of cloud

as opposed to atmospheric layer thickness when the receiver field of

view is fixed at 15 deg. With regard to received energy and especially

multipath pulse stretching, the most important factor is the optical

thickness of the cloud, not its distance above the receiver.

g

~ V
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VI. IMPLICATIONS FOR BLUE-GREEN PROGRAM

It is difficult to assess the feasibility of satellite-to-"-ibmarine

optical communications without a well-founded, tractable, analytic treat-

ment for multiple scattering in clouds. Simulation results have been

computationally expensive, highly aggregated (e.g., based on infinite

receiving planes), and often presented without error bounds. Though

for finite receivers, analyses involving the small-angle assumption are

fundamentally problematical, especially when applied to all but the
thinnest clouds.

The mathematical treatment of multiple scattering presented here

begins by deriving the scattering moments--predicated on basic physical

concepts and performed without approximations--and continues by develop-

ing the diffusion model, which was validated by published simulation

results for the identical problems. The credibility of both the ana-

lytic model and the simulation is established by their remarkable agree-

ment for optical thicknesses greater than 15--the range for which clouds

most severely degrade the propagation path. However, the diffusion

model provides expressions that are both computationally efficient and

cover a broad range of problems at all levels of aggregation. The

moment formulae and the diffusion expressions also provide the physical

insight into the scattering process that may be required to resolve new

problems and existing anomalies in certain experimental results, as

discussed below.

Since the diffusion model provides an expression for the full

radiance distribution on a plane just above the ocean surface, it can

be linked with other models for radiance propagation through the ocean

surface down to a submarine-mounted receiver. With the addition of

noise, the full propagation path would be mcdeled, allowing efficient

optimization of receiver aperture and field of view. In any case, we

are now prepared to comment on relevant parts of the current model of

optical pulse propagation from satellite to submarine.

All
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NAVY MODEL

The Navy's blue-green single-pulse downliak propagation model [9]
provides a common base for analyzing satellite-to-submarine communica-

tion system performance. The Navy model is modularized to permit

convenient incorporation of new results for each part of the propaga-

tion path (e.g., clouds, atmosphere, air/water interface). The de-

velopments presented here are relevant to pulse shape and width, total

transmission through clouds and the cloud-to-ocean atmospheric layer,

and the angular distribution of exiting radiation below the cloud.

In the following discussion, we either confirm the expressions used in

the Navy model or suggest alternatives.

The Navy model represents energy transmission through the cloud

layer by the Bucher simulation fit [4], which is given by

E = 1.69
T vT + 1.42 (71)

in our notation. Figure 12 plots Eq. (71) together with the diffusion

model result. The close agreement between the two curves demonstrates

that Eq. (71) is essentially correct and not subject to the factor-of-

two error in the 1.69 and 1.42 constants suggested in Ref. 9. The

extrapolation of Eq. (71) to E = 1 for T = 0, as done in the NavyS~T
C., model, seems appropriate; moreover, we agree with the zenith-angle

dependence on signal transmission taken from Bucher.

The Navy model mechanism for cloud-to-water energy transmission

appears to be inconsistent with the definition of energy transmission

" •t' through the cloud embodied in Eq. (71). Indeed, energy transmission

through the cloud can be defined as the probability that a photon

entering the cloud from the top will eventually emerge from the bottom.

Applied to energy transmission through the cloud-to-water atmospheric

layer, this definition leads to the conclusion that transmission loss

is due only to the angular distribution of exiting photons and the

atmospheric absorption coefficient. Therefore, the diffusion model

calculates the transmission loss as

* I_
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e-Kd sec 6 g(a) dw - [4 + Kd(4 - 3Kd) Ei(-Kd)

+ 3e-Kd (1 - Kd)] , (72)

where the angular distribution g(c) is given by Eq. (62) and Ei(x) is

the exponential integral function [16]. Equation (S-6a) in Ref. 9

does not account for atmospheric absorption, is apparently based on

a spot spreading phenomenon, assumes a Lambertian distribution of

emerging light, and is substantially different from Eq. (72).
-kt

The received pulse shape given by F(t) = t e in Ref. 9 con-

forms well with those computed by Bucher (4] and hence with those com-

puted here. For multipath time spreading due to clouds, we suggest

use of the Bucher simulation fit

-= -0.62 1.94
Aý - (Tv)

which agrees with our results for all T (Figs. 7 and 14). Equation (34),

which is used in Ref. 9, is not recommended because it may not conform

to physical prerequisites, as discussed in Sec. III. Figures 19 and

21 show that pulse stretching due Lo thc cloud-to-water atmospheric

path is negligible compared with that due to clouds. Hence we agree

with Eq. (S-25b), which sets cloud-to-water pulse stretching to zero.

EXPERIMENTAL VERIFICATION

Because the dif."usion model provides expressions for the power

received by a finite aperture and field-of-view receiver [Eqs. (69)

and (70)] located an arbitrary distance below a given cloud layer, the

model is suitable for verification by comparison with experimental

results. Indeed, an experiment is currently under way on the island

of Kauai partly for this purpose. However, experimental verification

is fraught with complications, such as (1) the difficulty of measuring

experimental input parameters (e.g., T, (cos 0), ka) accurately eaough

to conclude that the model is correct, and (2) the inconsistency of

the geometric boundaries governing the experiment with the assumptions
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used to develop the model (e.g., a plane-parallel cloud layer). Ob-

taining accurate measurements of physical parameters is beyond the

scope of this report, but the effect of boundary problems is discussed

below.

One importa:it, recent multiple scattering experiment was the Naval

Ocean Systems Center (NOSC) work on fog propagation reported in Ref. 1.

The effect of the ground as an absorbing boundary for photons has been

of some concern in interpreting the results of the NOSC experiment.

By using the boundary value techniques discussed in Sec. IV, the dif-

fusion model can be extended to account for an absorbing plane parallel

to and laterally displaced from the axis of propagation. Similar ex-

tensions can be developed to model rectangular clouds, or rectangulir

slots or holes in clouds.

A scaled-down multiple scattering laboratory experiment has been

suggested, using large tanks filled with water and suspended oil

droplets. The dimensions of the tank and the absorptive properties

of the walls required to model a cloud without horizontal boundaries

are two of the technical issues that should be resolved before such

an experiment is undertaken. Our results indicate that tank boundaries

(perpendicular to the coordinate frame of photon motion) can be modeled

in the diffusion theory sense, as either absorbing, reflecting, or

elastic, so long as photons enter the tank at least 15 optical thick-

nesses from the a-de walls. Thus, the tank dimensions and side-wall

absorptive properties may not inhibit the laboiatory verification of

the diffusion model.

IN
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